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EFFECT OF AN ELECTRIC CURRENT ON NECKING IN A TENSILE ROD

A. A. Bychkov and D. N. Karpinskii UDC 539.374:537.321/322

Necking conditions in a tensile thermoviscoplastic rod with passage through it of an alternating
electric current are studied. Modeling is performed with allowance for the complezr constitutive
relations for the rod material, heat transfer in the rod, and the current distribution across the
section of the rod as a function of the current frequency (skin effect). The stability of uniform
tension is examined by linear analysis of perturbations using the Routh-Hurwitz theory. The
results were refined by nonlinear analysis taking into account the effect of the amplitude curve
of perturbations on the stability of plastic deformation.

Introduction. In a previous paper [1], we calculated necking conditions in a tensile rod using a model
(see the bibliography in [1]) that assumes instantaneous occurrence and stabilization of local thinnings in
the sample at an early stage of strain localization. Stable localization of shape changes is associated with
increase in the number of spontaneously formed necks at rather large strains. We believe that further progress
in studies of necking should be aimed at development of methods for controlling deformation conditions in
samples. One of such methods is the electroplastic treatment of samples aimed at reducing energy expenditures
and preventing necking, in particular, in wire drawing [2, 3].

Spitsyn and Troitskii [3] assume that the effect of an electric current on the mechanical characteristics
of a loaded solid is associated with Joule heating, the ponderomotive forces produced by the magnetic field of
the current, and the “electron wind” due to electron scattering by dislocations (electron—plastic effect). These
mechanisms facilitate plastic deformation at sites of concentration of mechanical stresses, and, hence, electrical
treatment of samples can be considered a promising technology. Maksimov and Svirina [4, 5] calculated the
effect of Joule heat on crack-propagation conditions. As regards the effect of an electric current on necking
conditions in a tensile rod, we are aware only of a paper by Ruzanov et al. [6], in which it is concluded from
calculations that a pulsed electric current does not influence necking but only exerts a general plasticizing
effect on deformable samples. In our opinion, however, Ruzanov et al. [6] do not advance strong arguments in
favor of the conclusions drawn, and the problem requires additional examination.

In the present paper, we restrict ourselves to necking conditions in a solid rod made of a
thermoviscoplastic material with various strength and frequencies of the alternating electric current flowing
through the rod.

1. Formulation of the Problem. The necking problem for a solid rod of density pg in uniaxial
tension is formulated in {7]. We supplement the assumptions of [7] on deformation conditions in the rod by
the assumption that the alternating electric current acts on the rod at constant potential difference U at the
rod ends. The heating of the sample is taken into account by Joule heat and the Thomson effect [8]. Assuming
that the initial cross section of the rod Ay is homogeneous along the length, we obtain the following system
of equations describing the behavior of the sample at large plastic strains:
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Here v is the rate of displacement, ¢ is the strain, § is the temperature, C is the heat capacity, k is the
thermal conductivity, 3 is the fraction of plastic work converted to heat, A is the Thomson coefficient [§],
v = y0(1 + (8 — 273)), 7o is the initial specific resistance, a is the temperature resistance coefficient, and j is
the current density at constant voltage U = Up on the sample:
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Here ko (e,8) = (7/70) €*(1 + (Aoe™w/(1077))?/12) in the case of a weak skin effect [8] and
ke, 0) = L €2£(0.277 + 0.997( Agecw/(2 - 1077))1/?)
7o

in the case of a strong skin effect 8], jo and Uy are the current density and voltage on the sample at the initial
time, and lp is the initial length of the sample.
The relation between the Eulerian coordinate z and the Lagrange coordinate X is given by
t

z=X+/v(X,T)dT. (la)
0
The function ¢ = Ft_ll/)(H,a,é) specifies the nonlinear constitutive relation for the rod material. The

Bridgman factor F;™' = (1 4+ 2R./R)log(1 + R/(2R.)) allows for the triaxial stress in the neck, and
the local radius of the rod cross section R and the radius of the neck R, are related by the formula
R. = (1 + (0R/0z)%)*/?[(8*R/3<®) [1].
We write the constitutive relation in the same form as in [7]:
o= uFy e e™ev. (2)

Here u, n, m, and v are constants. In this case, for (1) the following initial and boundary conditions are
assumed:
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(V, 0*, and €* are constants).

2. Linear Analysis. We consider, at the time %y, the homogeneous time-dependent solution &g, oy,
vy, o, and Fyo of Egs. (1) and (2) with initial and boundary conditions (3). As in [7], a small perturbation of
this solution (nonhomogeneous solution) is written as

(X, t) = eo(t) + 8e(X, 1) = eo(t) + Sege™tt0)ei X
o(X,t) = oo(t) + 8§(X, 1) = oo(t) + Sapett0)eiéX
v(X,1) = vo(X, 1) + 6v(X, 1) = vp(X, 1) + bvge™t—t0)eit X (4)
0(X,t) = Op(t) + 80(X,t) = Og(t) + 86pe™!~t0)eitX
F(X,t) = Fi(t) + 8Fy (X, t) = Fio(t) + 6 Fpe™tt0)eieX

(3)
X =0 v =0,

where é¢, 6o, év, 66, and 6 F} are the amplitudes of perturbations, n = 6¢/(é¢) is a measure of perturbation
growth, and ¢ is a wavenumber. The choice of the nonhomogeneous solution (4) is based on the assumption
that the amplitude of the perturbation is small compared to eg, 09, vq, 6o, and Fig. Then, the Fourier series
of the nonhomogeneous solution can be restricted to the first term of the series. This method is commonly
used for stationary perturbed solutions, but it can also be employed for stability analysis of time-dependent
solutions [7]. It is assumed in this case that the growth rate of perturbation is much higher than the growth
rate of the homogeneous solution [9].
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Substituting (4) into (1) and (2) and taking into account that Fyy = 1 and é6Fyp =

—(Ao/(27r))£2e"2€060'0, we obtain the following system of linear equations with the unknowns é¢g, 609, dvg,
and 66y:
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(1800 + 27072e¥05% (1 + a(fy — 273))) 6eq
+ 860600 + (Mjoe0ils + aygjae®0s? — Cn — kE2e™0) 80y = 0.

Here s = k,(0,0%)/k.(c0,00). The roots of the characteristic equation of the present system determine
the stability of the solution of the problem for uniform tension of the rod (homogeneous solution). The
characteristic equation for the present system has the form

n° + () + ia))n® + (ah + ia%)n + af + id§ = 0,

where
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According to the Routh-Hurwitz stabllxty theory, the solution of the problem is stable if all roots of
the characteristic equation of the present linearized system have a negative real part. For this, it is necessary
and sufficient that the matrix

1 —df —ay af 0

0 1 =—df —a, 4}

0 0 a) =—af —a}

0 af —aj —a; O

aj —ay —aj} 0 0
have positive inners [10].

To calculate the homogeneous strain rate €y, we use the relation ég = é*e~0, and the temperature of
the rod at the stage of uniform deformation g is determined from the solution of the equation

o6 -9 0
€ 552 = woll + a6 — 273))j3e205* + Bon 2.

The stability boundary for the homogeneous solution of problem (1)~(3) corresponds to violation of
the condition of positive inners of the characteristic matrix. Results of calculation of this boundary for the
constants p = 2.486 - 10* MPa, n = 0.52, C = 3.6-10° J/(m? - K), k = 15 W/(m - K), 6§ = 294 K, m = 0.002,
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v = —0.5, pp = 7800 kg/m3 A = 4-107% m? [7, 11], 70 = 8.6 - 1078 Q-m, A = —22.8-1076 V/K,
a=33-1073 K~! [12], and {y = 0.05 m are shown in Fig. 1 for different values of the initial density 7o and
frequency w of the electric current [curves 1, 2, 3, and 4 correspond to w = 0, 500 kHz, 700 kHz, and 5 MHz,
respectively; curves 1-3 refer to a weak skin effect and curve 4 refers to a strong skin effect; jo = 2-107 A/m?
(Fig. 1a) and jo = 3-107 A/m? (Fig. 1b)]. The homogeneous solution is stable against the perturbation for ¢
and g¢ lying below the corresponding curves in Fig. 1a and b.

3. Nonlinear Analysis. Below, we perform a nonlinear stability analysis of necking in the tensile
sample to refine the results of the linear analysis in Sec. 2. For this, to the homogeneous solution of the
problem for homogeneous strain eg = g we add a perturbation of the strain of the form

£p = €0dg sin® (£(z — a)),

where 8y is the amplitude of the initial perturbation, £ = /(b — a) is a wavenumber, and @ < z < b, where a
and b are the coordinates of the left and right boundaries of the perturbed region. Apparently, the coefficients
of the Fourier series for the present perturbation decrease as N ™3, where N is the Fourier-coefficient number.
The chosen form of perturbation €, ensures a small error in discarding Fourier components with N > 1 and
is due to the necessity of comparing results of linear and nonlinear analyses. The latter allows us to examine
necking conditions with variation in the perturbation amplitude 9. Results of calculations of the evolution
of plastic strain (1)-(3) with perturbed initial conditions are given in Fig. 2 [¢* = 1.66 - 1072 sec™! and
&0 = 0.45], which shows the relative amplitude of the perturbation 6.(t) = (mzax g(z,t) — mrins(a:,t))/(égég)
(0 < z < lp) versus the homogeneous strain ¢q for various values of the initial density jo and frequency w of
the electric current and the wavenumber ¢ (the notation is the same as in Fig. 1; jo = 2- 107 (Fig. 2a and b)
and 3-10" A/m? (Fig. 2c and d), and ¢ = 157 (Fig. 2a and c), 314 m~! (Fig. 2b and d)].

4. Discussion of Results. We analyze the results obtained. As shown in Fig. 1, at rather high strain
rate £*, the critical strain €. depends greatly on the wavenumber £, particularly for its small values. According
to the results of the linear analysis (Fig. 1) at constant voltage U, an increase in the current frequency w
leads to a decrease in the stability of the rod against the perturbation. In this case, the curves in Fig. 1b are
below the curves in Fig. la for the same values of w. Thus, an increase in the initial current density jo favors
earlier necking, and the effect of the electric current is most pronounced for small €. The shift to the right
of the curves of £gc(€) in Fig. 1 with increase in jo s worth noting. At the same time, calculations show that
when the temperature resistance coefficient is & = 0, these shifts are absent and all curves issue from the
point g9 = 0, £ = 0.

According to the results of the nonlinear analysis (see Fig. 2), the perturbation ¢, first damps and
then, upon reaching € = £qc, the value of 8. begins to increase. In this case, for larger values of £, the increase
in 6. begins later and it proceeds more slowly (the curves in Fig. 2a and c¢ are above the curves in Fig. 2b
and d for the same values of jp and w). The curves for large values of w are above the curves for smaller w,
and the curves in Fig. 2a and b are below the curves in Fig. 2c and d for the same values of £ and w. This
confirms the results of the linear analysis.
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The calculations performed for various amplitudes of the initial perturbation in the range 107 < & <

10~2 showed that &, practically does not depend on the value of 8. In addition, the Thomson effect is found
to have little (less than 2% of €¢.) effect on the stability of the deformable rod.

Calculations show that the action of the alternating electric current on the deformable rod facilitates

necking in the rod. However, the current strength affects the critical necking strain to a greater extent than
the current frequency. The amplitude of the strain perturbation and the Thomson effect influence necking
only slightly.
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